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The axisymmetric creeping motion of a neutrally buoyant deformable drop flowing 
t,hrough a circular tube is analysed with a boundary integral equation method. The 
fluids are immiscible, incompressible, and the bulk flow rate is constant. The drop to 
suspending fluid viscosity ratio is arbitrary and the drop radius varies from 0.5 to 
1.15 tube radii. The effects of the capillary number, viscosity ratio, and drop size on 
the deformation, the drop speed, and the additional pressure loss are examined. 

Drops with radius ratios less than 0.7 are insensitive to substantial variation in 
capillary number and viscosity ratio, and computed values of drop speed and extra 
pressure loss are in excellent agreement with small deformation theories (Hestroni 
et al. 1970; Hyman & Skalak 1972a). For this drop size range, significant deformation 
will result only for Ca > 0.25. The onset of a re-entrant cavity is predicted a t  the 
trailing end of the drop for Ca x 0.75. Drop speed and meniscus shape become 
independent of drop size for radius ratios as small as 1.10. The extra pressure 
loss can be positive or negative depending mainly on the viscosity ratio, however a 
relatively inviscid drop can cause a positive extra pressure loss when capillary forces 
are significant. Computed values for extra pressure loss and drop speed are in good 
agreement with the experimental data of Ho & Leal (1975) for drops of sizes 
comparable with the tube radius. 

1. Introduction 
The motion of deformable drops and bubbles in circular tubes is of interest in a 

wide range of industrial and technical applications. The flow system arises in many 
processing flows and is of intrinsic interest to the rheology of suspensions. The flow 
of bubbles and drops in a circular tube has also been used as a model of the flow of 
blood cells through the capillaries (Prothero & Burton 1961; Hyman & Skalak 
1972a, b ) .  

This system is also important as a pore model of two-phase flow through porous 
materials and in particular as a model of the displacement of residual oil from 
geologic strata during enhanced oil recovery. Early attempts to attach physical 
significance to the concept of the permeability of a porous material utilized the 
analogy between Darcy’s law and the Hagen-Poiseuille law. This led to the use of the 
bundle of capillary tubes as a mathematical model for establishing the relation 
between permeability and porous medium characteristics such as porosity, specific 
surface area, and tortuosity. Scheidegger (1974), and Dullien (1979) review these and 
other related models of permeability. More recent models recognize the extensional 

t Current address : Fluid and Thermal Sciences Department, Sandia National Laboratories, 
Albuquerque, NM 87185, USA. 
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character of the flow along the sinuous paths of a porous material and use varying- 
arca tubcs to better model pore geometry (Payatakes, Tien & Turian 1973; 
Payatakes & Niera 1977; Payatakes 1982; Olbrieht & Leal 1983; Martinez 1987). 
Although a straight or constricted tube is a gross ovcr-simplification of the true pore 
geometry of geologic material, the effects of bounding walls, non-uniform strain due 
to constrictions, interfa,cial tension, drop volume, and viscosity ratio on the pressure 
gradient to volume flux relation can be examined. This latter function is of interest 
in the macroscopic Darcy flow description of multiphase fluid transport in porous 
media. 

Theoretical studies of the flow of drops and particles in circular tubes began by 
considering small particles with little or no deformation. Haberman & Sayre (1958) 
(see also Happel & Brenner 1965) considered isolated spherical particles and liquid 
drops in axisymmetric motion in a infinite tube by analytical and numerical means. 
Hestroni, Haber & Wacholder (1970) treated the case of a small spherical drop or 
bubble moving axially at an arbitrary radial location within the tube. Their result 
for a neutrally buoyant drop in axisymmetric motion gives the reduction in drop 
velocity as quadratic in drop size. They used this approximate solution for an 
undeformed drop in the normal stress balance on the fluid interface to obtain a 
leading-order approximation to the deformed drop shape, valid for vanishing 
capillary number. Brenner (1971) used the solution of Hestroni et al. in a reciprocal 
theorem for creeping flow to obtain the extra pressure decrease due to the presence 
of the drop suspended in the bulk flow. Brenner’s results show that if the drop to 
suspending fluid viscosity ratio, A, is 0.48 or less the suspension can flow at  the same 
bulk velocity, Ti, with less pressure difference than required for the suspending fluid 
alone. 

For small to  intermediate drop sizes, Hyman & Skalak (1972a, b )  considered the 
axisymmetric flow of a train of equally spaced drops in a circular tube as a model of 
blood flow in the capillaries. They considered both undeformed and deformed drops 
for arbitrary viscosity ratio and drop spacing. However, owing to lack of convergence 
in their series solution, they were restricted to drop sizes in the range a,/R, < 0.8 for 
undeformed drops and to  a,/R, < 0.7 for deformed drops, where a, is the undeformed 
drop radius and R, is the tube radius. Their results indicate that drop interactions 
vanish for drop spacing as small as one tube diameter. Chit (1986) also considered 
axisymmetric motions of drops, obtaining numerical solutions with a boundary 
integral method. His work focused on the effects of large capillary number, mainly 
for a,/R, = 0.7, and reports a re-entrant cavity a t  the trailing end in this parameter 
range. No evaluations of pressure drop are reported by Chi. 

For drops of undeformed diameter comparable with the tube diameter, an 
experimental investigation of a train of neutrally buoyant drops, spaced so as to 
eliminate drop interactions, was carried out by Ho & Leal (1975). Their results 
covered the range 0.726 < a,/R, < 1.10 for h varying from about 0.2 to 2. They 
measured the variation of drop velocity, U ,  and extra pressure decrease, AP+, with 
the drop size, bulk velocity and viscosity ratio and also carried out a flow 
visualization of the system in a frame moving with the drops. They confirmed the 
theoretical predictions that AP+ is negative if h is small. Direct comparison of the 
theory with the experiments is not possible, however, since Ho & Leal’s smallest 
dimensionless drop size of 0.726 just exceeds the largest value of 0.70 computed by 
Hyman & Skalak for deformed drops. The trends indicate good overlap between 
theory and experiment. 

t We are indebted to a reviewer for bringing this work to our attention. 
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For a,/R, 9 1, experiments have been conducted for bubble flow ( A  = 0) in 
capillaries by Fairbrother & Stubbs (1935), Prothero & Burton (196l), Taylor (1961), 
Cox (1962), Goldsmith & Mason (1963) and Schwartz, Princen & Kiss (1986). 
Bretherton (1961), using lubrication theory, analysed the problem for A = 0 and 
Ca( = y V / y )  + 0, where y is the suspending fluid viscosity and y is the interfacial 
tension. Bretherton also carried out experiments for comparison to  his theory, and 
found good agreement for The theory underpredicts the 
measured values of film thickness for smaller Ca. Teletzke (1983) recently extended 
Bretherton’s analysis to arbitrary values of A, also for vanishing Ca. For arbitrary 
Ga and A = 0, numerical investigations are required and have been carried out for the 
leading meniscus of a semi-infinite bubble by Reinelt & Saffman (1985), using finite 
differences, and by Shen & Udell (1985), using finite elements. Martinez & Udell 
(1989) consider both the leading and trailing menisci of a long inviscid bubble using 
a boundary integral equation method. Goldsmith & Mason (1963) carried out 
experiments both for long drops and bubbles ( A  = 0). These investigations are 
important as models of displacement in small capillaries and in Hele-Shaw cells. The 
major focus has been the evaluation of U / V  and of the film thickness of suspending 
fluid between the drop or bubble and the tube wall. The pressure difference across the 
menisci is also important for displacement and has been computed analytically for 
vanishing capillary number and numerically for finite values. 

In  the present investigation we consider the axisymmetric creeping motion of a 
neutrally buoyant deformable drop through a circular tube of radius R,. The drop to 
suspending fluid viscosity ratio is arbitrary. The drop size is also arbitrary but the 
range of most interest is expected to be for a = ao/Ro = O(1);  asymptotic behaviour 
is anticipated for large and small a. The problem is formulated as a boundary integral 
equation to be salved numerically for the unknown values of traction and velocity 
on the domain boundaries, including the fluid interface. The drop shape is also 
unknown a priori and the kinematic condition on the interface is used to generate a 
system of ordinary differential equations for the time variation of the coordinates 
from an initially specified shape to the desired steady drop profile. Once the steady 
shape and associated boundary velocities and tractions are determined, the drop 
deformation, the speed, and the extra pressure decrease in the tube due to the 
presence of the droplet, can be computed. In addition, the fluid velocity interior and 
exterior to the drop can be computed at any arbitrary point in the fluid domain. 
These variables are determined as functions of the dimensionless parameters that 
appear in the problem, viz. the undeformed drop radius to tube radius ratio, a ,  the 
drop to suspending fluid viscosity ratio, A,  and the capillary number, Ca = p V / y ,  
which measures the relative importance of viscous stresses to surface-tension- 
induced stresses. If the drop is not neutrally buoyant the Bond number, Bo = (p-p,)  
gRt/y,  is also relevant and measures the buoyancy relative to the surface tension 
forces. For generality, the problem formulation includes the effects of buoyancy, 
although only axisymmetric, neutrally buoyant problems are ultimately considered. 

The formulation of the fluid interface problem including the appropriate boundary 
conditions and a scheme, based upon the kinematic condition, to determine the 
steady shape are discussed. Details of the construction of a boundary integral 
equation for the axisymmetric, two-fluid problem are presented along with the 
method of computing the velocity vector in either fluid. The numerical treatment, 
using various finite element techniques, follows. Results of the analysis are presented 
for a significant subset of the parameter space, particularly for the range of drop size 
pertinent to multiphase flows in porous media. The results are compared, where 

< p U / y  < 5 x 
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FIGUKE 1. Steady translation of a viscous drop in a liquid-filled tube. 

appropriate, to existing analytical and experimental investigations. Finally, the 
major results of the analysis are summarized. 

2. Theoretical formulation 
Consider the axisymmetric creeping motion of a drop with viscosity Ap translating 

steadily with speed U in a tube filled with another liquid of viscosity p as shown in 
figure 1. The fluids are immiscible and a constant surface tension, y ,  is exerted along 
their common interface. The volume of the drop is 4n(a,j3/3, where a, is its 
undeformed radius. Both fluids are incompressible and the suspending fluid flows at  
constant discharge, Q, with a steady Poiseuille distribution far ahead and behind the 
drop. Gravitational body forces can be included, so long as they act along the 
symmetry axis such that the motion remains axisymmetric. 

The velocity, u,  and pressure, p ,  of the suspending fluid are governed by continuity 
and the Stokes approximation for momentum balance, 

V - U = O  for x E 5 2 + r ,  ( l a )  

V.a(u)  = 0 for XEQ, (1  b )  

a(u) = - p / + p [ V u + ( V u ) T ] ,  (2) 

where 52 denotes the suspending fluid domain with boundary r, including the tube 
walls, an inflow and outflow plane, and the fluid interface. The corresponding 
equations for velocity and pressure in the drop are given by, 

v * u = o  for xEoB+rg,  (3a )  

V.a(u)  = 0 for XEQ,, ( 3 b )  

a(u)  = -p , /+Ap[Vu+ ( V U ) T ] ,  (4) 

where 52, denotes the drop fluid domain and r, the interface between the two fluids. 
In these equations, p and p ,  are the dynamic pressures, 

p = p + p g z ,  p b  = p , $ - p b g z ,  

where P and Pb are the total fluid pressures, p and pb are the fluid densities, and g is 
the gravitational acceleration acting in the direction of decreasing 2, the coordinate 
along the axis of symmetry. The dynamic pressure measures the fluid pressure in 
excess of the hydrostatic contribution and will simply be referred to as the pressure, 
without special designation, in the remainder of this paper. 

In the equations to follow, lengths are non-dimensionalized with the tube radius, 
R,, velocity with the bulk velocity, V( = Q/nR:), pressure and stress with pV/R, ,  and 
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time with R,/ V .  The boundary conditions written in non-dimensional variables and 
with respect to a reference frame moving with the drop are 

on the tube and 

on r = l  

v = u  for xErB,  

( 6 b )  
1 

Ca 
a(v ) .n -a (u) .n  = - ( (~ -Boz )n  for x g r , ,  

on the fluid interface. There is also a kinematic condition on the interface requiring 
that the interface move normal to itself a t  the local normal velocity, 

( 7 )  

where Y(X, t )  is the position vector of a point on the interface. I n  these boundary 
conditions, n is the unit normal to rB directed outward from the suspending fluid, 
and K is the interface curvature non-dimensionalized by the tube radius. The 
boundary conditions on the tube are a fully developed Poiseuille flow far ahead and 
behind the drop and the no-slip condition on the tube wall. The interface is a material 
surface on which the velocities are continuous and the stresses are discontinuous in 
the normal direction by an amount proportional to the interface curvature. The three 
conditions on the interface do not overspecify the problem since the steady shape is 
unknown a priori and must be determined as part of the solution. 

It is convenient to reformulate this fluid interface problem as a boundary integral 
equation for the unknown velocity on the interface and stress on the tube wall. A 
reformation as a boundary integral equation enjoys several significant advantages 
for fluid interface problems in general. One advantage, which is gained for any 
boundary integral equation representation of a boundary value problem, is the 
reduction in dimension ; the axisymmetric problem can be reduced to a vector line 
integral along the generating curve in a meridional plane. Furthermore, the method 
is particularly efficient for the fluid interface problem where the shape is to be 
determined as part of the solution since the boundary velocities on the interface are 
determined directly without need of solving for the entire velocity field. The surface 
velocity, through the kinematic condition, defines the rate of deformation of the fluid 
interface. Finally, troublesome features associated with dynamic mesh specification, 
characteristic of domain methods such as finite difference and finite element, are 
greatly reduced. 

The construction of a boundary integral equation for elastostatic analysis of a 
domain with inclusions of different material properties was discussed by Rizzo & 
Shippy (1968); the analogous problem of the deformation of a liquid droplet 
suspended in another liquid was discussed by Rallison & Acrivos (1978) for the 
exterior problem in Stokes flow. Our development for the interior problem is similar 
to these earlier discussions. The general scheme is to reformulate the problem for 
each different fluid as a boundary integral equation relating the stress and velocities 
on the bounding surface of the considered domain. The boundary conditions on the 

ay 
- ( X , t ) . n  = v - n ,  
at 
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fluid interface can be used directly in the reformulation leaving the kinematic 
condition to determine the steady shape. 

Ladyzhenskaya (1969) gives a general solution to the incompressible Stokes 
equations in an interior domain Q with boundary r. In  non-dimensional variables, 
the solution, applied to the suspending fluid domain, is 

where 

This solution gives the velocity a t  a field point, w,(x), in terms of the velocities, wi(y), 
and tractions, t t ( v ( y ) )  = gi,nL, on the boundary. n(y)  is the outward pointing normal 
to the boundary. In  a well-posed boundary value problem, either the velocity or 
traction (or some combination of these) is specified, leaving the other to be 
determined. The equation (8) can be used to determine this unknown boundary 
vector if it is converted to a boundary integral equation by letting x + r from Q. The 
limiting procedure is indicated here because the stress kernel, T ( x , y ) ,  suffers a jump 
as the field point passes from the interior to the boundary (Ladyzhenskaya 1969). 
The resulting boundary integral equation can be written in a general form as 

where C includes the principal value from the jump in the stress kernel, T,  as x passes 
from the interior to the boundary. The value of C depends upon the smoothness of 
the boundary at the point x. In  particular, C = --$I (/ is the unit tensor) at a smooth 
boundary point, defined as a point having a well-defined local tangent plane. I n  the 
form (9), the integral equation is formally valid for X E Q  by setting C = -1.  In 
the axisymmetric case, to be discussed presently, C can be expressed in terms of the 
turning angle a t  an edge of an axisymmetric surface. 

A similar procedure gives the boundary integral equation for the fluid interface, 
x E r,, r 

written in terms of the inward-pointing normal to the drop surface. We also note the 
form taken by (10) when x$(Q,+I ' , ) ,  

(11)  
1 

T , k ( X > Y ) W ) d W  = \s U,,(x,y)t,(udy))dI'(y), 
fB 

which is most easily proven by considering the so-called Green's formula for the 
Stokes equations (Ladyzhenskaya 1969). This is a general relation for the integral 
equation representation of the system (3) using hydrodynamic potentials when the 
point x lies outside the considered domain and its boundary. 

We can now construct the boundary integral formulation of the multiple-domain 
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problem in the following way. On subtracting (11) from (9) and using the boundary 
conditions (5) and (6) we obtain for X E ~ ,  (r = r,+r,), 

Similarly, on adding (9) and (10) and using the boundary conditions we obtain for 
x E r,, 

(1  + A )  Chi v,.(x) + 

= Ui,nZ(~-Boz)dT. (13) I,, 
Equations (12) and (13) are boundary integral equations for the unknown tractions 
on the tube wall and the surface velocity on the fluid interface. They include all the 
boundary conditions except the kinematic condition which is left to determine the 
unknown drop shape. Given the shape of the interface, the equations can be solved 
to yield the remaining unknown boundary values of velocity and stress. The velocity 
field anywhere in the fluid domain could then be computed using (8) in the 
suspending fluid and a similar equation for the drop region. These equations cannot 
be used directly, however, as they individually require the stress distribution on the 
interface; the boundary integral equations yield only the jump in the normal 
component across the interface through the boundary condition (6). A similar 
procedure to that used above to construct the boundary integral equations (12) and 
(13) can be applied to construct equations for interior velocities which require only the 
previously determined boundary values. The resulting equation is the same as (12) 
if we replace the principal value term, Cki V,, with the following : 

-v , (x)  for XEQ 

-hu,(x) for XEQ,. 

When the geometry and boundary conditions are axisymmetric, the boundary 
integral equation can be reduced to  vector line integrals along the generating curve 
of the boundary (Youngren & Acrivos 1975). If the equations are written in 
cylindrical coordinates, the azimuthal integrations can be performed analytically. 
The resulting form of the equations is similar to (9) and reads 

Axisymmetric boundary integral equations corresponding to (12) and (13) follow 
directly from (15). The principal value tensor, C,  can be written in a general form in 
the axisymmetric formulation. In particular, it  is useful for the numerical analysis to 
determine C when the point x lies a t  an edge of the boundary as shown in figure 2. 
The principal values are determined by excluding the point x from the region with 
a piece of the torus. By first writing the stress kernels, 7ij, in terms of a local polar 
coordinate system centred a t  x, the principal values are found by taking the limit as 

I9 FLM 210 
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details 

2 

FIGURE 2. Schematic of an axisymmetrie boundary and its discretization. 

the minor radius of the torus, S in figure 2 ,  becomes zero. By this procedure the 
principal value tensor is found to be 

($z-$1)-7c-~(sin2$,-sin2(bl) i(c0s 2(b2 - cos 2(b1) 
27c + ( o s  q h 2  - cos 2(b1) (q5z-$1)-7c+i(sin 2(b,-sin2(bl) 

As noted previously, C = -$I at  5 point lying on a smooth portion of the boundary, 
i.e. when (b, = Additional details of this limiting procedure, and of the 
axisymmetric fundamental solutions, U and T,  are given in Martinez (1987). 

3. Numerical analysis 
The numerical solution of the boundary integral equations, (12) and (13), involves 

the approximation of the integral operators by a linear system to be solved for the 
unknown stresses and velocities. The boundaries r, and r, are discretized into a 
total of M boundary elements, each with n, geometrical boundary nodes. Each 
curvilinear boundary element is described parametrically according to 

where ( z j ,  ri) are the cylindrical coordinates of thej th  node on the element. The @&) 
are Lagrange interpolants defined on the boundary, and the parameter lies in the 
interval - 1 d 6 6 1, see figure 2. The computer code for this problem was written to 
allow linear or quadratic variation of the @i with [. With this parameterization 
scheme any axisymmetric boundary geometry can be generally approximated by 
simply specifying the boundary coordinates corresponding to an appropriate 
boundary element discretization. A differential element of surface area along the 
boundary element may be expressed as dT= 27c~([)J([)d[, where J ( [ )  is the 

Jacobian of transformation, ds 

d6 
J ( 6 )  = - = [ ( z5 )2+  (r5)"1", 
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and s is the arclength along the generating curve in a meridional plane. The surface 
normal and curvature are easily computed in tcrms of 6. 

The velocity and traction components on each element are also referred to a basis 
as in the finite element method, 

Each boundary element contains nb basis nodes where two unknown components of 
velocity or traction are to be determined ; the total number of basis nodes is N .  Note 
that the basis nodes do not necessarily coincide with the geometrical nodes. Either 
constant, linear or quadratic basis function, 4 can be specified for u and t .  

Applying (12) to the basis nodes on f, and (13) to those on I',, and using the 
approximations presented above, a fully populated 2h7 x 2N matrix system results 
and is displayed below to show explicitly the appearance of the parameters, 

The matrix G includes numerical coefficients resulting from the inner product of the 
velocity kernels and basis functions, and H includes those from the traction kernels 
and basis functions. The submatrix GTB, for example, contains the coefficients 
derived from numerical integration of the boundary integral equation, applied to a 
boundary point on f,, over a boundary element on rB. CBB is the tri-diagonal 
submatrix containing the principal values a t  the basis nodes on the interface and tB 
is the vector containing the normal jump in the stress across the interface, e.g. 

1 
Ca 

ti" =-(fK-Boz)nl 

for the j t h  global basis node. The entries in G are calculated according to 

which are the element contributions from the basis nodes i and j. Nodes that reside 
on two contiguous boundary elements contribute two such parts which are summed 
and assembled into the global matrix (19). A similar equation gives the entries in H ;  
these coefficients also include the contribution from C. The quadratures are 
performed numerically over elements r, when xi 4 r,. The kernels are improper on 
elements where xi is included and the integration is performed on these elements by 
extracting the singular part, integrating it analytically and summing with the 
numerical integral of the remainder. 

Upon rearranging (19), the linear system, 

A x = f  (20) 

results where x contains the unknown tractions on the tube and the unknown 

19-2 
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The system (20) contains all the boundary conditions except for the kinematic 
condition which is left to determine the steady shape of the drop. For any given drop 
shape, the system (20) can be solved for the corresponding velocities on the interface. 
These can then be used in the kinematic condition to determine the rate of 
deformation of the interface. The desired shape is the one that yields v - n  = 0. In the 
present scheme, the entire problem is solved by specifying an initial estimate of the 
shape and solving the initial value problem generated by substituting the interface 
velocities from (21) into the kinematic condition (7) .  The initial value problem is 
integrated in time until the steady state is achieved, yielding the desired drop shape. 

The time integration was performed using a forward Euler formula in conjunction 
with a comparison backward Euler step for estimating the local truncation error. The 
algorithm automatically selects the step sizes such that a local truncation error 
tolerance is maintained a t  each step. The steady state was defined as Ilo-nll < 0.01 for 
the velocity vector a t  node points a t  the interface. The number of steps required to 
reach the steady shape varied from about 20 to 100, depending on the initial shape 
and the parameter set for the problem. The nominal adjustment time to reach the 
steady solution was about 2 to 4 units of VtlR,, or about the time to travel one or 
two tube diameters. The converged shape from a previously computed problem was 
used as the initial drop shape for a new problem with a similar parameter set. 

The convergence behaviour of this scheme was discussed previously in Martinez & 
Udell (1989) where i t  was applied to a similar problem. Briefly, the normal velocity, 
measured in tcrms of a norm of the vector of normal velocities on r,, is found to 
decrease exponentially in time, with time constant as noted above. The only defect 
of thc scheme is that the ordinary differential equations (ODE’s) for the history of 
the coordinates on the fluid interface become stiff for Ca g 1, owing to large variation 
in the time constants among the component equations. Time constants for ODE’s 
corresponding to the thin film of suspending fluid between the drop and tube wall, 
found in small-Cu problems, are much longer than those corresponding to the leading 
or trailing meniscus. The explicit scheme used here to integrate the ODE’s responds 
to stiffness by reducing the time step, requiring an increasing number of steps to 
reach the convergence criteria for steady state. However, stiffness is much less of a 
problem for small Ca in this application than for analysis of long bubbles (Martinez 
& Udell) where the thin film region is a large fraction of total interfacial area. 

The mesh extent on the tube was a t  least one tube diameter ahead and behind the 
drop; longer meshes produced no discernible change in results. Between 40 and 80 
node points were used on the entire boundary, depending on the drop size considered. 
Selective comparison with solutions generated with about a 50 YO increase in the 
number of nodes resulted in less than 1 % difference in results. To maintain a proper 
discretization, an occasional mesh redistribution was performed by fitting a cubic 
spline to the polar coordinate representation of the interface. If necessary, the shape 
was adjusted to maintain the drop volumc to within 1 % of the specified value. The 
node spacing was then prescribed according to the local surface curvature, with 
closer spacing in the regions of largest curvature, and the new initial value problem 
restarted until another remesh was called for or the steady state was achieved. 
Computations were performed in single precision on a 32 bit digital machine; 
comparison of selected single-precision solutions with a double-precision version of 
the code indicated four significant figures of the precision in the former. Additional 
details of the numerical analysis are given in Martinez (1987). 
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4. Discussion of results 
In this section the results of the numerical simulations in terms of the effects of the 

non-dimensional parameters on the flow fields, drop profiles, drop deformation, 
relative drop speed, and the additional pressure loss are discussed. The discussion 
begins by first considering the general flow behaviour of the two-phase system as a 
way of introducing some of the relevant physical mechanisms that are encountered 
in subsequent discussions. The effects of variation in each non-dimensional parameter 
on the drop shape, deformation, drop speed, and pressure loss are considered 
separately. The objective is a logical presentation of results by focusing on one effect 
at a time, simultaneously offering some insight into the underlying physical 
mechanism. Many mechanisms are intimately related, however, and it is not always 
possible to strictly follow this format. 

The particular range of parameter values examined in the simulations were chosen 
both to illustrate their effects over a substantial part of the parameter space and to 
allow comparison of the present results to available theoretical and experimental 
results (Hyman & Skalak 1972a,b; and Ho & Leal 1975). Thus drops with 
undeformed radii in the interval, 0.5 < a d 1.15 were considered for values of Ca 
equal to 0.075, 0.1, and 0.15, and for A equal 0.19, 1.0, 2.04, and 10.0. This drop size 
range unifies existing theoretical and experimental investigations and permits the 
demarcation at  the lower end where the effect of walls becomes important and at the 
upper end where the results asymptote to those corresponding to infinitely long 
drops and bubbles. The values of h and Cu also coincide with values used by the 
aforementioned investigators thereby allowing direct comparison to the present 
results. Furthermore, a study of the effect of viscosity ratio for 0.1 < A < 50 and of 
the capillary number for 0.05 < Ca < 1.0 is also included for a = 0.726. 

4.1. Flow fields 

It is instructive to begin the discussion by illustrating the general flow pattern that 
results when a neutrally buoyant drop translates steadily in Poiseuille flow. Figure 3 
shows the relative velocity vector field in and about a small viscous drop ( a =  
0.726, A = 10) and a large, relatively inviscid drop (a = 1.10, h = 0.19); Ca = 0.1 in 
both cases. Both flow fields are shown in a reference frame that translates with the 
drop speed ; thus the walls move backwards relative to the stationary drop. In  this 
frame, i t  is apparent that the shear transmitted across the interface results in a 
recirculation with zero net flux inside the drop. The flow towards the rear, in the 
interior of the drop, occurs in a shell near the interface whereas the compensating 
forward flow occurs in the central portion of the drop. An annulus of suspending fluid 
contiguous with the tube wall moves backwards with respect to the drop. 

There are two stagnation rings on the interface reflecting the fact that fluid 
elements on the tube centreline in the suspending fluid exceed the drop speed while 
those closer to the tube wall lag behind the drop. The stagnation rings indicate that 
there is a dividing streamtube separating the net backflow of suspending fluid from 
a bolus of fluid trapped between each pair of a train of drops. The bolus moves with 
a bulk speed equal to that of the drops. This interpretation for a train of drops is 
valid for drop spacings greater than about one tube diameter, according to the 
analysis of Hyman & Skalak (1972~) .  For an isolated drop, the fluid within 
the streamtube is being displaced by the drop, while the remaining fluid outside the 
streamtube is the leak-back flux by-passed by the drop. These flow patterns will 
likely bear upon the stress distribution on the fluid interface in the presence of 
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FIGURE 3. Velocity vector field in and about a neutrally buoyant drop suspended in Poiseuille 
flow: ( a )  u = 0.726, Ca = 0.10. h = 1 0 ;  ( b )  a = 1.10, Ca = 0.10, h = 0.19 

adsorbed surfactants or impurities, a common situation in flows involving a large 
amount of interfacial surface area. Convection of surfactant in the vicinity of the 
stagnation rings may result in a variable surface mobility and can even lead to 
immobile regions in the case of insoluble surfactants (Davis & Acrivos 1966). These 
flow patterns are in agreement with previous theoretical and experimental studies of 
the axisymmetric motion of drops and particles in Poiseuille flow (Taylor 1961; 
Goldsmith & Mason 1963; Wang & Skalak 1969; and Ho & Leal 1975). 

4.2. Effect of the drop volume 
The variations in drop shape with drop size are shown in figure 4 on which a varies 
between 0.726 and 1.10. The figure also illustrates the variation in shape with A.  For 
comparison purposes, the profiles are presented such that the nose of each drop 
begins a t  the same spatial location. 

The shapes all show a higher curvature a t  the nose of the drop than at  the trailing 
end. This characteristic profile is in agreement with previous theoretical and 
experiment investigations (Goldsmith & Mason 1963; Hyman & Skalak 1972b, Ho 
& Leal 1975) and is attributable to several mechanisms particular to Poiseuille flow. 
In  tube flow, sizeable drops are constrained by the tube walls and there is a pressure 
loss in the direction of flow resulting in higher suspending fluid pressure at  the rear 
of the drop than about the leading end. Since referring axes to a uniformly 
translating frame leaves the stress distribution unchanged, the flow field responsible 
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FIGURE 4. Variation in drop shape with drop volume and viscosity ratio for Ca = 0.10; 
a = 1.10, 0.914, 0.726 from left to right; (a )  A = 0.19; ( b )  A = 10. 

for drop deformation can be viewed as that shown in figure 3, which is asymmetric 
with respect to the drop. 

The profiles for drops as large as a = 0.7 are only moderately deformed from a 
spherical shape, even for significant variations in capillary number and viscosity 
ratio. However, beginning with ax 0.9, the profiles become appreciably extended for 
all capillary numbers and viscosity ratios as a result of conforming to the constraint 
of the tube walls. At the upper end of the size range the computations show that 
incremental increases in drop volume result in an increase in the length of drop, while 
the radial extent approaches an asymptotic value. Goldsmith & Mason (1963) report 
that  a film of suspending fluid of constant thickness develops between the front and 
rear of a steadily translating drop when a % 1 .  This asymptotic behaviour in film 
thickness is noted in the calculations for a slightly greater than one and is further 
indicated by the approach of the drop radius to a constant value in the central 
portions of the drop, accompanied by an asymptote to a constant drop speed. The 
development of an asymptotic film thickness with increasing a is illustrated in figure 5 
as i t  shows that the profiles are unchanging with a except for a lengthening in the 
axial direction to accommodate the additional volume. The asymptotic shape is 
nominally attained for a z 1.1. The thickness of the film of suspending fluid 
surrounding the drop is, for these cases, dependent only upon the capillary number 
and viscosity ratio. The computed values are compared with available theoretical 
and experimental results for long drops and bubbles in figure 6 showing the film 
thickness variation with capillary number and viscosity ratio. Evidently the film 
thickens with increasing capillary number owing to  the attendant increase in 
deformation. The film also thickens with increasing viscosity ratio for the same 
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capillary number. Increasing viscosity ratio also increases drop deformation since a 
viscosity contrast across the interface enhances the deforming viscous stresses in the 
suspending fluid. The film thickness for A = 0.19 compares well with the values for 
A = 0 computed by Martinez & Udell (1989) for the leading meniscus of an infinitely 
long bubble. These numerical results for small A compare well with the data collected 

FIGURE 5. Development of an asymptotic film thickness of suspeiidiiig fluid surrounding the 
chop for Ca = 0.10; a = 1.15, 1.10, 1.05 from left to right; ( u )  h = 0.19: (6) h = 10. 

FIGURE 6. Film thickness of suspending fluid as a function of capillary number: --, present. 
resu1t.s; ----, results from Xartinez & Udell (1989) for A = 0 and a co ; . . . , Fairbrother & Stubbs 
(1935); 0. Taylor (1961); A, Goldsmith & Mason (1963). h = 6. 
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by Taylor (1961), while the empirical correlation of Fairbrother & Stubbs (1935) is 
seen to deviate for Ca > 0.06. The comparison of the present results to the film 
thickness for a long drop with h = 6 and Ca = 0.075, reported by Goldsmith & 
Mason, is satisfactory. 

I n  the case a+ co, the leading meniscus is important as a model of the 
displacement of suspending fluid originally in place by the steady translation of a 
viscous finger. In  this regard it is important to note that although the film of 
suspending fluid left on the tube wall thickens with increasing viscosity ratio, the 
leak-back flux is less than for displacement by an inviscid bubble. The inviscid 
bubble can exert no tangential stresses on the suspending fluid and so leaves the 
entire film on the wall, while the viscous drop drags film fluid along with it. A more 
viscous drop leaves less suspending fluid behind if the relative volume flux of the drop 
decreases with increasing h for fixed capillary number, i.e. 

where R, is the asymptotic drop radius and the subscript h denotes variables 
corresponding to a more viscous drop than the unsubscripted variables. The 
inequality is borne out in the calculations as indicated in figures 5, 6, and 13, which 
show that a more viscous drop has a slower relative drop speed and is surrounded by 
a thicker film of suspending fluid than a less viscous drop. This observation was also 
made by Teletzke (1983) who extended the asymptotic analysis of Bretherton (1961) 
(for a + co, A = 0, Ca -+ 0) to arbitrary A. 

In  considering the current problem as a model of two-phase flow in a porous 
structure, the ratio of drop velocity to average bulk velocity is important as a 
measure of the mobility of the dispersed phase. The speed ratio, U / V ,  is shown in 
figure 7 as a function of a for various values of Ca and A. Also shown are the 
numerical results of Hyman & Skalak (1972~)  for undeformed liquid spheres, 
presumably the limit in shape when Ca --f 0, and the experimental data of Ho & Leal 
(1975) for 0.726 < a < 1.10. The results of Hyman & Skalak show that U / V + 2  at 
vanishingly small a ;  thus small drops move at nearly the local suspending fluid speed 
on the tube centreline. The speed ratio decreases with increasing size, owing to the 
retarding effect of the no-slip condition, and eventually attains a constant value for 
a > 1 as discussed above. Excellent agreement is found between the results for 
undeformed drops and the present calculations up to a % 0.7, above which the effects 
of size and capillary number on deformation become significant; the deviation in 
figure 7 ( a )  is due to the difference in the values of drop viscosity. The computed 
velocities exceed the experimental values reported by Ho & Leal by 2-7 YO over the 
range of comparable drop sizes. Furthermore, the experimental values show U/V to 
be a monotonically decreasing function of a until a constant value is attained. The 
computations, on the other hand, show a minimum in U/V in the range 0.8 6 a < 1 
when h 2 1. Inspection of the numerical solutions shows this minimum to coincide 
with a maximum in girth in this size range. Thus, according to the computations, a 
relatively viscous drop of size a z 0.9 is less easily deformed, has a slightly broader 
profile, and so moves slightly slower than a larger drop with identical h and Ca. 

The pressure drop required to drive the suspension a t  the average velocity, V ,  is 
of special interest, particularly with regard to the present system as a model of the 
pore-scale two-phase flow in porous media. A similar relationship between average 
pressure gradient and velocity in macroscopic flow in porous media involves a 
proportionality parameter known as the permeability. In the extension of the 
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original theory of Darcy (1856) for single-phase flow to multiphase flow, the 
permeability is assumed to depend mainly on the relative volume fraction of 
the considered phase (see Scheidegger 1974). The strong effect of drop volume is also 
seen in the present model problem. 

The variation in the extra pressure decrease, A P ,  with drop volume is shown in 
figure 8 for various values of Ca and A.  The results of Hyman & Skalak and of Ho 
& Leal are also shown for comparison. The extra pressure decrease is defined as the 
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total pressure decrease over a distance extending into the undisturbed flow ahead of 
and behind the drop, less the Poiseuille value over the same distance and for the same 
volume flux of suspending fluid alone. The extra pressure drop represents the local 
pressure loss due solely to the presence of the drop. 

The additional pressure gradient is small when a < 0.5 ; however, AF+ increases (or 

FIGURE 7. Drop speed as a function of drop size for (a) h = 0.19, ( b )  h = 1.0, (c) h = 2.04, ( d )  h = 
10: -. present results; -.-.- . Hyman & Skalak (1972a) for undeformed drops and (a) 
h = 0. Symbols in (a-c) are the data of Ho & Leal (1975): 0, Cu = 0.075; U. Cu = 0.100; V, 
Cu = 0.lfiO; A, Cu = 0.180. 
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FIGURE 8 ( a ,  b ) .  Extra pressure decrease as a fuiictioii of drop size: -, present results; . . ., Hymaii 
& Skalak (19720,) for undeformed drops and (a) h = 0. Symhols are the  data of Ho & 1,eal ( 1  975) : 
0. Ca = 0.075; 0. Ca = 0.100; V, Ca = 0.150. 

decreases) dramatically with a thereafter. As we found for U / V ,  the effects of Ca are 
significant only for a > 0.7. Unfortunately, the effect of drop volume on the extra 
pressure decrease cannot be fully isolated from effects of viscosity and capillary 
number when the drop radius is comparable with the tube radius. The viscosity ratio 
is central to determining whether more or less pressure gradient than the Poiseuille 
value is required to drive the bulk flow a t  the same flow rate. Generally, relatively 
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-- 8AP+ R, .(5) 
&a pv aa pV 

Ca h 'b 

0.075 0.19 0.822 -41.6 - 39.6 
0.10 0.19 0.799 -37.4 -40.3 
0.075 10.0 0.745 25.8 28.0 
0.10 10.0 0.706 21.6 23.4 

TABLE 1. Asymptotic estimation of AP+ for long drops (a = 1.125). 

inviscid drops result in AF'+ < 0 while viscous drops give A€'+ > 0, see figure 8. This 
fluid exchange mechanism will depend strongly on drop volume (O(a3)).  In this size 
range, the capillary number is also important in establishing the sign of AP+ due to 
wall effects. Strong capillary forces (Ca 4 1)  correspond to significant resistance to 
the deformation required by the lateral constraint of the walls resulting in extra 
dissipation in satisfying the normal stress jump across the interface. Both the fluid 
exchange mechanism and the wall effect are included in the analysis of Brenner 
(1971) showing A€'+ = O(a5) for moderately small a ;  the present results show that 
this strong dependence continues for a % O(l ) ,  and is more pronounced with 
extremes in viscosity ratio, i.e. A -+ 0 and h $ 1. 

Asymptotic behaviour as the drop size increases past unity is also observed for AP+ 
as it was for the shape and speed ratio. In fact, as observed by Ho & Leal (1975), the 
increase in AF'+ with a can be predicted satisfactorily by considering any increase in 
drop volume to result solely in an increase in length. The corresponding additional 
pressure loss is estimated by considering as a limiting case two coflowing fluids in 
tube flow, one of which flows in an annulus adjacent to the tube wall. The pressure 
gradient is given by (cf. Ho & Leal 1975) 

where r,, is the asymptotic drop radius non-dimensionalized by the tube radius. 
Computed values in finite difference form, SAP+/Sa, are compared to the above 
expression in table 1. Thus, at  large drop size any increase in pressure loss with 
drop volume is due mainly to the replacement of the drop volume with fluid of 
different viscosity. 

The comparison of the present results with those of Hyman & Skalak for 
undeformed drops is excellent for a S 0 . 7 ,  above which drop deformation is 
important. The comparison between the data of Ho & Leal and these results for 
h < 1 is also excellent over the entire overlap range in a (the comparison for h = 0.58 
is shown in figure 14). The degree of agreement for h = 0.19 is, however, capillary- 
number dependent. The theoretical values of AP+ for h = 2.04 are systematically 
higher than the values reported by Ho & Leal. 

4.3. Effect of the capillary number 
Given the interpretation of the capillary number as a measure of the relative 
importance of viscous forces to surface-tension-induced forces, its significance in 
determining the drop shape should come as no surprise. Indeed, besides the more 
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FIGURE 9. Effect of capillary number on drop shape for a = 0.726; (a) h = 0.19 and Ca = 1.0,0.75, 
0.50, 0.25, 0.10 from left to right; (b)  h = 2.04 and Ca = 0.75, 050, 0.25, 0.10 from left to  right. 

1 .o 

0.5 

R 
- 0  

0.5 

1 .o 

Rn 

-4 - 3  - 2  - 1  0 

ZIRn 

FIGURE 10. Effect of capillary number on drop shape for a = 1.10; (a )  h = 0.19 and Ca = 0.15, 
0.10, 0.05 from left to right; ( b )  h = 2.04 and Ca = 0.15, 0.10, 0.05 from left to  right. 
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FIGURE 11. Effect of capillary number on drop speed, solid symbols are numerical results: 
-, u = 0.126; ---, u = 0.914. 

obvious effects of drop volume on the deformation (due to constraining walls) the 
capillary number correlates most readily with the drop deformation. The strong 
effect of the capillary number on the drop deformation is demonstrated in figure 9 for 
a = 0.726 and in figure 10 for a = 1.10, and for a ten-fold increase in A. The effect of 
the capillary number on the drop shape is striking, particularly for the small drops 
where the variation in capillary number is greatest. In  all cases, the drop is extended 
in the direction of flow with increasing Cu. Moreover, the curvature a t  the leading 
end increases, while the curvature a t  the trailing end decreases, with increasing 
capillary number. 

The small drops (a = 0.726) develop negative curvature a t  the rear of the drop 
beginning with Cu M 0.75 for both h = 0.19 and h = 2.04. The same behaviour a t  
large capillary number was noted by Chi (1986) for small a, and by Martinez & Udell 
(1989) for long inviscid bubbles. Goldsmith & Mason (1963) reported the development 
of a re-entrant cavity a t  the rear of long drops and bubbles suspended in a Poiseuille 
flow a t  large capillary number. Goldsmith & Mason further observed that at 
sufficiently high capillary number the suspending fluid penetrated far into the body 
of the drop in the form of a long thread. The thread broke into a series of smaller 
drops upon stress relaxation or if the thread penetrated the entire length of the drop. 
While the present computational scheme cannot explore as large a range in capillary 
number as that investigated experimentally by Goldsmith & Mason, the results 
indicate similar behaviour a t  large capillary number and predict the onset of a 
re-entrant cavity for Ca !Z 0.75. 

The effect of the capillary number on the speed ratio, U / V ,  and the extra pressure 
decrease, A€'+ is shown in figures 11 and 12, respectively (see also figures 7 and 8). In 
general, the figures show that a(U/V)/aCa > 0 and i3AP+/i3Ca < 0, although the 
values are strongly dependent on drop size. The relative drop speed for a = 0.91 in 
figure 11, for example, begins substantially lower than that for a = 0.726 but 
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FIGURE 12. Effect of capillary number on extra pressure decrease, solid symbols are numerical 
results: -. (I = 0.726. -.-. n = 0.914. 17 = 1.10. 

eventually attains comparable values with the smaller size for Cu 2 0.25. The 
increase in U / V  with increasing capillary number is simply due to larger drop 
deformation for larger capillary number and hence localization of the drop about the 
centreline of the tube where fluid velocities are greater. The decrease in AP' with 
increasing Ca is also strongly dependent on drop size (figure 12). Large drops 
(a  > 0.9) show a rapid decrease in AP+ for small capillary number (note the abscissa 
is a logarithmic scale) and a more gentle decrease with increasing capillary number. 
Smaller drops (a = 0.726) show a more modest decrease in the entire range of 
capillary number and show significant decrease in A€'+ only for Ca > 0.5. The 
decrease of A€'+ with increasing capillary number can be anticipated upon 
consideration of the discontinuit,y in normal stress a t  the int,erface stated in equation 
(6). The resistive forces of surface tension are strong when the capillary number is 
small and the difference in pressure across t,he interface is O(y/a,) .  The major effect 
when Ca 4 1 is to raise the level of pressure inside the nearly spherical drop as 
compared to the pressure exterior to the drop ; the viscous stresses in the suspending 
fluid may yet yield significant dissipation as a result of the highly disturbed flow 
about an unyielding interface. Hence, even relatively inviscid drops can produce 
AP+ > 0 for very small capillary number as shown in figure 12 on the curve for 
a = 0.914 and h = 0.19. This effect of capillary number is dependent on drop size, 
however. According to the analysis of Hyman & Skalak (1972a) for undeformed 
bubbles (Ca + O ,  h = 0), A€'+ < 0 for a = 0.8. Thus large capillary forces will result in 
positive additional pressure loss for relatively inviscid drops but only if u > 0.8. 

4.4. Effect of the viscosity ratio 

Some effects of the drop to suspending fluid viscosity ratio have already been 
discussed briefly in the foregoing ; we give a more complete account of these effects 
in this section. The effect of drop viscosity on the general form of the flow field is 
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FIGURE 13. Effect of viscosity ratio on drop speed for Ca, = 0 10; -0- present results, 
open symbols are the data of Ho & Leal (1975); V. a = 0.726; 0. a = 0.914, 1.100. 

illustrated in figures 3 (a) and 3 ( 6 )  which show that the viscous drop has a lower shear 
rate than does the less viscous drop. That is, the velocity distribution in the viscous 
drop is reminiscent of a rigid, neutrally buoyant axisymmetric body suspended in 
tube flow. In contrast, the less viscous drop displays a vigorous recirculation and two 
weak, though clearly visible, eddies in the nose and tail regions interior to the drop. 

The shapes of the nose region of the profiles, shown in figure 4(a, b) ,  are nearly 
unchanged with increasing drop size for the low-viscosity drop while the profiles 
variation is prominent for the more viscous drop, the profile curvature increasing 
with increasing drop size. At large capillary number, the profiles for small drops with 
large h are wedgc-shaped as shown in figure 9. It is also observed that the 
deformation increases with A ,  all other parameters being equal. This effect of h 
becomes clear in consideration of the normal stress jump condition a t  the interface, 
equation (6b) ,  showing that both drop and suspending fluid viscosities are important. 
In particular, using continuity in a local normal-tangential (n-s) coordinate system, 
specialized for u, = u, = 0 on the interface, 

and the no-slip condition, equation (6a) ,  it follows that av,/an = au,/an, in which 
case the normal stress balance across the fluid interface can be written as 

au, - ( K  -ao z )  
p b - p + 2 ( 1 - h ) -  - 

an Ca ' 

In the case h = 1, the normal viscous stresses cancel; in the general case, an increase 
in h increases or decreases the capillary pressure jump, depending on the sign of 
au,/an. Referring to figure 3, au,/an < 0 about the leading stagnation ring and 
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FIGURE 14. Effect of viscosity ratio on extra pressure decrease for Cu = 0.10; -0- present 
results; open symbols are the dat,a of Ho & Leal (1975): V, a. = 0.726; 0,  a, = 0.914: 0,  u = 1.100. 

au,/an > 0 about the trailing stagnation ring, indicating increased and decreased 
deformation in these respective regions for an increase in viscosity ratio. This 
int,erpretation of the effect of viscosity ratio on the normal stress condition elucidates 
the increase in deformation with increasing viscosity ratio, other parameters held 
fixed, and the wedge-shaped drops predicted at large viscosity ratios (figures 4,9, and 
10). 

The effect of the viscosity ratio on the speed ratio and extra pressure loss is shown 
in figures 13 and 14 where U / V  and A P  are plotted as functions o f h  for Ca = 0.1 and 
a = 0.726, 0.914 and 1.10. The data reported by Ho & Leal for the same parameter 
values are also shown for comparison. As expected, a(U/V)/ah -= 0 for all h but the 
rate of change is largest for h = O( 1)  and vanishes for h --f 00. The minimum of U /  V 
with drop size discussed earlier is also apparent in figure 13. 

Figure 14 shows that aAP+/aA > 0 for all A but the rate of change increases with 
drop size. However, hpt approaches an asymptotic value as A -+ co. It is also apparent 
from figure 14 that the sign of AP+ depends on A. In particular, the figure shows that 
suspensions of' low-viscosity drops can be transported with less pressure gradient 
than if the tube contained only suspending fluid flowing a t  the same bulk volume 
flux. Lower viscosity drops reduce the shear stress between the drop and tube wall 
and hence reduce the dissipation and pressure loss. The value of A where AP+ = 0 
increases towards one as the drop size increases. The limiting value can be shown to 
be A = 1 when a+ co by considering the limiting case of two coflowing fluids in a 
tube, one of which flows in an annulus contiguous with the tube walls. 

Figure 14 also shows that there exists a range in h for which AP+ has a maximum 
with respect to a. Thus, for the approximate range 0.4 < h < 1, A€'+ is greater for 
a = 0.914 than for the smaller and larger drop size. A€'+ is a monotonically decreasing 
or increasing function of a for A < 0.4 and A > 1. This effect is also evident in figure 
8 ( b ) .  The reason for this behaviour for certain viscosity ratio and drop size is the 
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competing effects of capillarity and of the simple exchange of lower or higher 
viscosity fluid in the volume occupied by the drop. The primary reason for AP+ > 0 
when h < 1 is the increased magnitude of the viscous stresses and hence enhanced 
viscous dissipation caused by the highly disturbed flow about an unyielding 
interface. For fixed Ca, this effect depends on the drop size. If the drop is small 
enough, the flow disturbance yields a negligible contribution to AP+. When a is 
sufficiently large the reduction in volumetric dissipation by replacement of the drop 
volume with fluid of lower viscosity will more than compensate for the opposing 
effect of capillarity, resulting in AP+ < 0 if A < 1. Finally, there is some intermediate 
drop size where the effect of the flow disturbance is sufficient to  overcome the fluid 
replacement mechanism and yield a maximum value of A P ,  as illustrated in figures 
8 ( b )  and 14. 

5. Conclusions 
The flow of a viscous drop in a tube filled with a second immiscible viscous fluid 

has been analysed using a boundary integral equation method. The effects of the 
drop size, the ratio of viscous and surface-tension forces, and the viscosity ratio on 
the drop shape, drop speed, and the pressure gradient were examined. 

In a reference frame fixed to the drop, there is a dividing streamtube separating 
the leak-back flow of suspending fluid from a bolus trapped ahead of and behind the 
drop. The dividing streamtube meets the interface to form a stagnation ring on the 
leading and trailing ends of the drop. A small eddy resides in the nose and tail regions 
interior to the drop. 

The effects of the no-slip condition on the tube wall become important for a 2 0.7. 
Smaller drops are insensitive to substantial variations in capillary number and 
viscosity ratio, and show significant deformation only when Ca > 0.25. The drop 
shape and speed are independent of drop size for a 2 1.10. Further increases in drop 
volume result only in an increase in its length without change in shape of the leading 
or trailing menisci, or in the thickness of the film of suspending fluid surrounding the 
drop. The asymptotic film thickness increases with capillary number and viscosity 
ratio although the leak-back flux in the film decreases, relative to the bulk volume 
flux, with increasing viscosity ratio. 

The drop deformation increases with capillary number and viscosity ratio, both of 
which act to diminish the normal stress difference on the fluid interface. The 
deformation has a stronger correlation to the capillary number, however. Drops of 
size a = 0.726 were found to develop negative curvature at the rear of the drop for 
Ca z 0.75. 

The required additional pressure loss, owing to the presence of the drop, can be less 
or greater than that required for the suspending fluid alone, depending mainly on the 
viscosity ratio for moderate values of the capillary number. Drops with lower 
viscosity than the suspending fluid require less pressure gradient than would be 
necessary in their absence to maintain the same volume flux. However, strong 
interfacial forces (Ca 4 1) can result in positive extra pressure decrease, even for 
A < 1, if a > 0.8. The viscosity will ultimately determine the sign of A€'+ as a + 00. 

Computed values of drop speed and extra pressure drop are in excellent agreement 
with the theoretical results of Hyman & Skalak (1972a) for small drop size. The 
comparison with the experimental data of Ho & Leal (1975) for undeformed radii 
comparable with the tube radius is also excellent for extra pressure decrease and 
satisfactory for drop speed. 
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